Today's Plan:

Learning Target (standard): I will use the remainder theorem and factor to theorem to locate zeros of polynomials. I will use the zeros to factor the ploynomial.

Students will: Complete practice problems over previous concepts at the boards, put up homework problems on the board and make necessary corrections to their own work, and take a quiz.

Teacher will: Provide practice problems over previous concepts, check homework problems for accuracy and provide students feedback, describe and provide quiz problems.

Assessment: Board work, homework check and quiz

Differentiation: Students will work at the board, go over and correct homework at their seats, and actively engage in quiz problems.

Quadratics & Factoring Review:

1)
$$x = -7, -6$$

9)
$$-3(u+3)(u^2-3u+9)$$

$$(2)n = 5,8$$

$$10)5(a+5)(9a-8)$$

$$3)r = \sqrt{10}, -\sqrt{10}$$

$$9)-3(u+3)(u^2-3u)$$

$$10)5(a+5)(9a-8)$$

$$11)f(-3) = 2$$

$$(11)f(-3) = 2$$

4)
$$x = 2\sqrt{2}i, -2\sqrt{2}i$$
 12) $f(6) = -12$

$$(12)f(6) = -12$$

$$5)k = -5.1$$

$$5)k = -5,1$$

$$13) f(x) = (x-3)(x+i)(x-i)(\sqrt{2}x+\sqrt{5}i)(\sqrt{2}x-\sqrt{5}i)$$

$$6)x = -\frac{3}{2},11$$

$$zeros: x = 3,-i,i,-\frac{\sqrt{10}}{2}i,\frac{\sqrt{10}}{2}i$$

$$6)x = -\frac{3}{2},11$$

zeros:
$$x = 3, -i, i, -\frac{\sqrt{10}}{2}i, \frac{\sqrt{10}}{2}i$$

7)
$$a = \frac{2}{9} + \frac{5\sqrt{2}}{9}i, \frac{2}{9} - \frac{5\sqrt{2}}{9}i$$

8)
$$b = \frac{4}{7} + \frac{\sqrt{5}}{7}i, \frac{4}{7} - \frac{\sqrt{5}}{7}i$$

Simplify:

$$\frac{9x+4}{2x-5}$$

$$= \frac{9}{2} + \frac{53}{2(2x-5)}$$

List the possible rational zeros:

$$f(x) = 6x^4 + 2x^3 - x^2 + 20$$

MN2:4

Solve by completing the square.

$$9x^2 - 6x + 2 = 0$$

$$\frac{9x^2-4x}{9} = -\frac{2}{9}$$

$$\chi^{2} - \frac{2}{3}\chi + \frac{1}{9} = -\frac{2}{9} + \frac{1}{9}$$

$$(x-\frac{1}{3})^{2} = -\frac{1}{9}$$

$$X-\frac{1}{3}=\frac{1}{3}$$
; $-\frac{1}{3}$;

$$X = \frac{1}{3} + \frac{1}{3}; \frac{1}{3} - \frac{1}{3};$$